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Facile synthesis of core intermediates toward sialyl nucleoside mimetics
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6-Deoxyphosphonated intermediates, 8 and 12, were efficiently synthesized from D-fructose and sucrose,
respectively. These novel intermediates will be useful to synthesize various D-tagato- and fructofurano-
side derivatives as inhibitors of sialyl transferase or sialidase.
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Figure 1.
Sialic acids, which are abundant on human cell surfaces, are
crucial receptors at the non-reducing end of oligosaccharide chains
in cell wall glycoconjugates.1–3 They are, therefore, ideally located
for a wide variety of functions such as cell–cell communication,
blood coagulation, fertilization, and other biological events.4,5 In
addition, sialic acids involvement in the pathogenesis of a variety
of diseases including inflammatory disease, cancer metastasis,
and virus infection has led to a wide interest in the synthesis of
modified sialic acids including sialyl nucleoside mimetics as probes
for the study of sialic acid-recognizing proteins.6,7 Our interest lies
in investigating mimetics of CMP-Neu5Ac or CMP-KDN (Fig. 1)
through the synthesis of compounds of the general structure 1.
These sialylmimetics are designed to retain the structural features
essential for the interaction with a particular protein, but are struc-
turally simpler compounds with potentially improved pharmaco-
logical profiles.

An earlier investigation into the importance of the sialyl moiety
of transition-state analogues of CMP-Neu5Ac revealed that the
complete Neu5Ac residue may not be required for high enzyme
affinity.8 Thus, our design for sialylmimetics contained a phospho-
nate group that has replaced the entire sialic acid portion (Fig. 2,
structure 1).9 This approach would allow attachment of an accep-
tor as a monoester while at the same time retaining a negative
charge under physiological conditions. In addition, we are inter-
ested in investigating the role of the C-4 position of the nucleoside
and the pyrimidine base in the binding affinity. Herein, we report
the synthesis of two key intermediates of phosphonate monoester
sialylmimetics based on very inexpensive carbohydrates, D-fruc-
ll rights reserved.
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tose and sucrose. These intermediates, D-fructofuranoside and
D-tagatofuranoside derivatives, would allow us to explore the
hydrophobicity, hydrophilicity, and steric bulk and also the effect
of epimerization at C-4 position on sialic acid recognizing proteins.

In a previous report, a route was developed for the preparation
of sialyl nucleoside mimetic of the general structure 2 (Fig. 2) start-
ing from the carbohydrate D-fructose.10 However, in the first step,
the methyl glycoside was prepared via a Fischer type methodology
Figure 2.



Scheme 1. Reagents and conditions: (a) AcCl, CH3OH, 38%; (b) PPH3, DIAD, N,N-
DMF, 0 �C, 65%; (c) TsCl, pyridine, 0 �C, 66%; (d) Ac2O, pyridine, 0 �C, 86%; (e) NaI,
acetone, 95 �C, 72%; (f) P(OMe)3, reflux, 72%.

Scheme 2. Reagents and conditions: (g) (i) 2,2-DMP, p-TsOH, 1,4-dioxane, 80 �C;
(ii) TsCl, pyridine, 0 �C, overall 53%; (h) Ac2O, pyridine, 0 �C, 83%; (i) NaI, acetone,
95 �C, 79%; (j) P(OMe)3, reflux, 80%.
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which resulted in a mixture of a/b fructofuranoside and fructopyr-
anoside, respectively (Scheme 1). The tetrahydroxyl compound 3
obtained was then purified by passing through an ion-exchange
resin column with water as eluent which proved to be an exceed-
ingly time-consuming step. In our current synthesis of compound
3, we modified the purification method by performing an efficient
column chromatography using 40% methanol in ethyl acetate to
obtain the pure compound. Following modified Mitsunobu condi-
tion,11,12 epoxide 4 was obtained as a mixture of stereoisomers in
9:1 ratio as determined from 1H NMR data.

Regioselective tosylation of the 6-hydroxy group in compound 4
gave the tosylate 5. Subsequent acetylation afforded fully pro-
tected compound 6. It should be noted that we only report analyt-
ical data for the major isomer of compounds 4, 5, and 6 in this note.

Interestingly, iodination of the mixture of isomers 6 resulted in
a single compound 7 in 72% yield after purification. This iodo com-
pound 7 was treated with freshly distilled P(OMe)3 to obtain the
corresponding 6-deoxy-6-dimethoxy phosphonate 8.13 A series of
nucleophiles can then be introduced at the C-4 position of phos-
phonate 8 to build a library of fructofuranoside derivatives.

In our effort to access tagatofuranoside derivatives we at-
tempted a different route using an inexpensive starting material,
sucrose, as shown in Scheme 2.

6-Tosylated 1,3-isopropylidene 9 was synthesized directly from
sucrose using a previously reported method.14 Compound 9 was
treated with acetic anhydride-pyridine to give 4-O-acetyl deriva-
tive 10, which was converted into the 6-iodo fructofuranose 11
in good yield. Michaelis-Arbuzov reaction15 of iodo compound 11
with P(OMe)3 afforded 6-deoxy-6-dimethoxyphosphinyl deriva-
tive 12.16 The acetyl group at C-4 position of compound 12 can
be easily converted to a leaving group which can then undergo
SN2-type reaction resulting in tagatofuranoside derivatives.

In summary, we have synthesized two 6-deoxy-6-dimethoxy
phosphonates, 8 and 12, which can be manipulated to prepare no-
vel sialyl nucleoside mimetics for the inhibition of sialic acid recog-
nizing proteins. Both compounds 8 and 12 provide flexibility in
terms of introduction of functionality in the unit but while inter-
mediate 8 gives access to fructofuranoside derivatives, intermedi-
ate 12 results in tagatofuranoside derivatives allowing us to
explore the importance of C-4 position of the nucleoside.
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